regeneration in nature

Home » Fish » A support cell subpopulation maintains robust regeneration of adult hair cells in zebrafish

A support cell subpopulation maintains robust regeneration of adult hair cells in zebrafish

In contrast to other vertebrates, mammals cannot regenerate the mechanosensory hair cells in the epithelia of their adult ears after age-related, disease or trauma-induced cell death. Zebrafish can definitely regenerate their hair cells located not only in the inner ear but also within the sensory lateral line. This lateral line consists in rather regularly spaced sensory organs called neuromasts formed by hair and support cells. It is well known that in larval zebrafish hair cells show a strong regenerative ability and, after their ablation, are regenerated from the symmetrical division of the surrounding support cells. Now, a recent paper from the laboratory of David W. Raible reports for the first time on the robust regeneration of these hair cells on aged adult zebrafish and characterizes a slow-dividing subpopulation of support cells that could explain this robustness in hair cells regeneration (http://www.ncbi.nlm.nih.gov/pubmed/25869855).

In this study the authors used several transgenic lines that allowed them to easily visualize and track both hair cells and the surrounding support cells. After neomycin treatment on sexually matured animals, they showed first that 75% of hair cells were ablated by 2 hr and then normal numbers were recovered by 72 hr, a rate of recovery similar to that observed in larval zebrafish. Next, they analyzed whether this regenerative capacity was diminished with age by comparing 1-year and 3-year-old animals. Their results show that 3-year-old zebrafish were still capable of fully regenerating their hair cells after neomycin treatment although it took a little bit longer compared to 1-year-old animals (5 days instead of 3 days). Remarkably, these adult zebrafish were capable of properly regenerating their hair cells after each of 10 sequential rounds of hair cells ablation and regeneration.

In larval zebrafish, regenerated hair cells derive from the symmetrical division of support cells. The authors then checked whether the number of these support cells changed after repeated rounds of regeneration in adults. However, the number of support cells in each neuromasts remained about constant after those experiments suggesting that support cell renewal was tightly regulated during hair cell regeneration. Then the authors combined a transgenic line with labeled hair cells and BrdU staining and found out that the number of BrdU positive hair cells decreased 12 days after BrdU exposure but at the same time the number of hair cells remained quite constant indicating that in normal conditions adult hair cells go through constantly loss and replacement. These results were further corroborated by the use of transgenic lines carrying the photoactivatable fluorescent protein Eos.

Finally the authors tried to understand how support cells are capable of dividing symmetrically to give rise to hair cells during multiple rounds of ablation and regeneration without being depleted themselves. They hypothesized the existence of a subpopulation of slow dividing support cell progenitors. Therefore, they used a transgenic line expressing Eos in all support cells and their rationale was that after multiple rounds of regeneration the red Eos signal present in dividing support cells originating hair cells would be diluted. In contrast, support cells that would not divide or did it much less frequently would retain higher levels of red Eos. Interestingly, they found a population of label-retaining support cells at the anterior end of the neuromasts as well as smaller population with similar characteristics at the posterior end. These results suggested that support cells behave differently depending on their localization within the neuromast. Remarkably, these anterior support cells were much less probable to give rise to hair cells during regeneration.

In summary the authors described here how adult and aged zebrafish are still capable of robustly regenerating the hair cells from their lateral lines. More importantly, they characterized a subpopulation of slow dividing support cells that could originate the hair cells precursors during regeneration and cell turnover. Future experiments should corroborate these findings and further analyze whether the environment around these distinct anterior support cells might have a role as a niche to maintain these support cells in a more quiescent state.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Francesc Cebrià

Francesc Cebrià

Francesc Cebrià

I am a Biologist and Professor at the University of Barcelona. I do my research on a fascinating animal: freshwater planarians. You can cut them in as many pieces as you want and each piece will regenerate a complete new flatworm in very few days. In this blog I will keep you updated on the latest news on the field of animal regeneration. You will be able to follow the latest research on how planarians, axolotls, newts, cnidarians and other animals are able to regenerate parts of their bodies

Personal Links

View Full Profile →

%d bloggers like this: